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Abstract

For an abelian variety A over a number �eld we study bounds

depending only on the dimension of A for the minimal degree d(A) of

a �eld extension over which A acquires semi-stable reduction. We �rst

compute d(A) in terms of the cardinalities of the �nite monodromy

groups of A which leads to a bound on d(A) in terms of the classical

Minkowski bound. We then show this bound is tight up to its 2-part by
considering p-adic coverings of the local points of a universal abelian

scheme.

1 Introduction

An abelian variety A over a number �eld K is said to have semi-stable
reduction if the neutral component of the �ber of the Néron model of A at
any closed point of SpecOK is a semi-abelian variety, i.e an extension of an
abelian variety by a torus. The interest of semi-stable reduction comes from
the fact that abelian varieties with this property are better behaved. For
instance the semi-stability property ensures the invariance by base extension
of the Faltings height of an abelian variety. In [SGA] exposé IX Grothendieck
proves several seminal results related to the semi-stable reduction of abelian
varieties among which the semi-stable reduction theorem.

Theorem 1.1. (Grothendieck, semi-stable reduction) Let A be an abelian

variety over a number �eld K. Then there is a �nite extension L of K such

that AL has semi-stable reduction.

This theorem allows us to make the following de�nition.

De�nition 1.2. Let g be a positive integer. For an abelian variety A over
a number �eld K, we set

d(A) = min{[L : K] | L/K �nite, AL has semi-stable reduction}.

1



For a number �eld K, we set

dg(K) = lcm
B/K p.p. dimB=g

d(B)

where p.p. stands for principally polarised. And �nally we set

dg = sup
dimB=g

d(B),

the supremum being taken over all abelian varieties of dimension g over some
number �eld.

We prove that the lowest common multiple dg(K) for any number �eld
K is realized as the value d(A) of some abelian variety A over a number �eld
L/K.

Theorem 1.3. For any number �eld K and nonzero integer g there is a �nite
extension L/K with a principally polarised abelian variety A of dimension g
over L such that

d(A) = dg(K).

In a previous work [Ph], we built for every positive integer g (using wild
�nite monodromy, see below) and for each odd prime p a (CM) abelian vari-
ety Bp of dimension g over a number �eld Kg such that the p-adic valuation
of d(Bp) is given by

r(g, p) =
∞∑
i=0

b 2g

pi(p− 1)
c.

The numbers r(g, p) together form the Minkowski bound

M(2g) =
∏
p

pr(g,p)

which is also given by the lowest common multiple of the cardinalities of the
�nite subgroups of GL2g(Q).

This leads to the following result.

Theorem 1.4. Let g be a positive integer. Then there is an abelian variety

A of dimension g over some number �eld such that

M(2g)

2g−1
= d(A).

Furthermore we have the inequalities

M(2g)

2g−1
≤ dg ≤M(2g).
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Both these results will be obtained from a more technical statement,
namely Theorem 4.2.

The main interest of the second theorem is to give an almost sharp esti-
mate for dg. Note also that the upper bound given here is a strong improve-
ment from the most commonly used one dg ≤ Card GL2g(Z/12Z) which can
be deduced from Proposition 4.7 of [SGA] exposé IX. Indeed, this can already
be seen on the �rst values

g 1 2 3 4
M(2g) 24 5760 2903040 1393459200

Card GL2g(Z/12Z) 4608 ' 3.2× 1016 ' 1.2× 1038 ' 1.9× 1068

but also from the asymptotics lim
n→∞

(M(n)
n! )1/n ' 3.4109 (see [Ka]) and

lim
n→∞

(Card GLn(Z/12Z))1/n2
= 12.

We now brie�y expose the content of this paper. We �rst relate d(A)
to the �nite monodromy groups of A, where A is an abelian variety over
a number �eld K. These groups, which represent the local obstruction to
semi-stable reduction, were �rst introduced by Serre in the case of elliptic
curves in [Se] and generalized by Grothendieck to any dimension in [SGA].
For a non-archimedean place v of K we denote by ΦA,v the �nite monodromy
group of A at v. Let ΣK be the set of non-archimedean places of K, then
we get the following formula

d(A) = lcm
v∈ΣK

Card ΦA,v. (1)

This with the divisibility bound Card ΦA,v |M(2g) proved by Silverberg and
Zarhin in [SZ] yields the upper bound of Theorem 1.4 through the divisibility
relations

d(A) |M(2g) and dg |M(2g).

The relation between �nite monodromy groups and d(A) also opens a way
to build abelian varieties with maximal d(A) knowing only local data which
is done by Theorem 4.2. In order to achieve this we look at the geometric
behavior of �nite monodromy groups in families of abelian varieties. More
precisely we study their variation in the �bers of abelian schemes A → S. We
are able to replace the abelian scheme A by its `-torsion subscheme which is
a �nite étale cover of S. This comes from the fact that the �nite monodromy
groups of A can be read on the Galois action on the `-torsion given ` is a
prime big enough (see Proposition 2.2). For such a cover we show that the
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image of Galois in its �bers is locally constant for the v-adic topologies and
so are the �nite monodromy groups in the �bers of abelian schemes. To
recover a global object from this situation we thus require some results on
weak approximation on the base scheme.

We wish to apply these results to a universal abelian scheme for abelian
varieties of a given dimension g. A substitute to such a scheme is con-
structed in Chapter 7 of [GIT]. The base Hg of this abelian scheme provided
by Mumford is a moduli space for principally polarised abelian varieties of
dimension g with some rigidi�cation. It is not known whether Hg satis�es
weak approximation or not. To remedy this issue we use a result of Ekedahl
on Hilbert's irreducibility theorem for �nite étale covers which allows us to
solve our weak approximation problem up to some uncontrolled �nite �eld
extension. This last part explains the presence of the �eld L in Theorem 1.3.
As a consequence we also obtain a form of local-global principle for �nite
monodromy groups.

2 Finite monodromy groups and d(A)

2.1 Local situation

In this section A is an abelian variety over a local �eld Kv with valuation
v of residue characteristic p. Let us denote by Kun

v the maximal unrami�ed
extension of Kv and IKv its absolute Galois group. It follows from [SGA]
exposé IX section 4.1 and Grothendieck's Galois criterion for semi-stability
that for an abelian variety A over Kv there is a smallest extension (Kun

v )A,s
of Kun

v over which A acquires semi-stable reduction. Its Galois group is ΦA,v

by de�nition. In particular if Lv is an extension of Kv then ALv has semi-
stable reduction if and only if (Kun

v )A,s ⊂ LvKun
v . Here we �rst show that we

can descend the extension (Kun
v )A,s/K

un
v to an extension of the same degree

over Kv over which A acquires semi-stable reduction. This is done at the
cost of the Galois property of (Kun

v )A,s/K
un
v .

Lemma 2.1. There is an extension Lv/Kv of degree Card ΦA,v such that

ALv has semi-stable reduction. Moreover, if Lv/Kv is a �nite extension such

that ALv has semi-stable reduction then Card ΦA,v divides the rami�cation

index of Lv/Kv.

Proof. By section 4.1 of [SGA] exposé IX the extension (Kun
v )A,s is Galois

over Kv and we have an exact sequence

1 ΦA,v Gal((Kun
v )A,s/Kv) Ẑ 1.
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As Ẑ is projective (see proposition 5.2.2 of [W]) this sequence admits a
splitting s. The subgroup H = s(Ẑ) is closed as the continuous image of a
compact, veri�es H∩ΦA,v = {1} and is of index Card ΦA,v. It is therefore an
open subgroup and corresponds to an extension Lv/Kv of degree Card ΦA,v.
Moreover we have LvK

un
v = (Kun

v )A,s by construction so that ALv has semi-
stable reduction.

For the second part of the theorem, let Lv/Kv be such that ALv has semi-
stable reduction. Then we have Card ΦA,v | [LvK

un
v : Kun

v ] as (Kun
v )A,s ⊂

LvK
un
v so that the rami�cation index e(Lv/Kv) = [IKv : ILv ] is divisible by

Card ΦA,v.

The following proposition will enable us to recover the �nite monodromy
groups of the �bers of an abelian scheme in the next section.

Proposition 2.2. Let ` > max(2 dimA + 1, p) be a prime number. The

group Gal(Kun
v (A[`])/Kun

v ) is either ΦA,v or ΦA,v × Z/`Z.

Proof. By Proposition 4.7 of [SGA] exposé IX we have (Kun
v )A,s ⊂ Kun

v (A[`])
and by Proposition 3.5 of loc. cit. an element σ ∈ Gal(Kv/(K

un
v )A,s) acts

unipotently with order 2 on A[`]. That is, if x ∈ A[`] we have (σ−id)2(x) = 0
and so σ2(x) = 2σ(x) − x. We get σ`(x) = `σ(x) − (` − 1)x = x as x is
of `-torsion and that Gal(Kun

v (A[`])/(Kun
v )A,s) is of exponent `. Hence this

group is either trivial or Z/`Z.
In the �rst case Gal(Kun

v (A[`])/Kun
v ) = ΦA,v and we are done. In the

second case, the prime divisors of ΦA,v are smaller or equal to 2 dimA + 1
by the divisibility bound Card ΦA,v | M(2 dimA) so that by choice of ` the
extension (Kun

v )A,s is linearly disjoint of the unique extension Kun
v,` of K

un
v

of degree `. As Kun
v (A[`]) is the unique extension of degree ` of (Kun

v )A,s
we get that it is the compositum (Kun

v )A,sK
un
v,` and so the statement on its

Galois group follows.

2.2 Global situation

The main theorem of this section will follow from the study of the local
situation and the following result of weak approximation for �elds.

Proposition 2.3. Let K be a number �eld and v1, . . . , vn ∈ ΣK be distinct

places. Let L(vi)/Kvi be �nite extensions of the same degree d. Then there

is an extension L/K of degree d such that there is a unique place wi over vi
for each i ∈ {1, . . . , n} and it veri�es Lwi ' L(vi).

This result is proved similarly to other classical results of the same �avor,
see for example chapter 6 of [Ri] and specially Theorem 4.
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Theorem 2.4. Let A be an abelian variety over a number �eld K. Then

there is an extension L/K of degree lcm
v∈ΣK

Card ΦA,v such that AL has semi-

stable reduction. Moreover if L/K is a �nite extension such that AL has

semi-stable reduction then

lcm
v∈ΣK

Card ΦA,v | [L : K].

Proof. Let d = lcm
v∈ΣK

Card ΦA,v. For v ∈ ΣK such that A has not semi-

stable reduction at v let dv be such that dv · Card ΦA,v = d. By Lemma
2.1 there is an extension Lv of Kv of degree Card ΦA,v such that ALv has
semi-stable reduction. Let Mv be the unrami�ed extension of Lv of degree
dv. ThenMv/Kv is of degree d and we can apply Proposition 2.3 to the local
extensions Mv/Kv for the places v ∈ ΣK with ΦA,v non trivial. We get an
extension L/K such that AL has semi-stable reduction by construction.

Now let L/K be an extension such that AL has semi-stable reduction.
Then for every v ∈ ΣK and every place w | v of L by Lemma 2.1 we have

Card ΦA,v | [Lw : Kv]

so that d | [L : K] as the global degree is the sum of the local degrees.

Remark 2.5. As a consequence of the theorem we get the equality (1) of
the introduction d(A) = lcm

v∈ΣK

Card ΦA,v.

With the work of Silverberg and Zarhin we get the divisibility bound
M(2g) as a corollary.

Corollary 2.6. Let A be an abelian variety of dimension g over a number

�eld. We have the divisibility relations d(A) |M(2g) and dg |M(2g).

Proof. By Corollary 6.3 of [SZ] we have the divisibility relation Card ΦA,v |
M(2g) for any place v ∈ ΣK . The corollary then follows directly from the
equality

d(A) = lcm
v∈ΣK

Card ΦA,v

given by Theorem 2.4.

3 Some p-adic open coverings of abelian schemes

3.1 From �nite étale covers of schemes to p-adic coverings

In this section K is a �eld. The goal here is to give a re�ned version of
Krasner's lemma for �nite étale covers as in [Po] Proposition 3.5.74 for a
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local �eld L/K. We �rst recall the construction and properties of the Galois
closure of a �nite étale cover of a connected scheme.

Proposition 3.1. Let S′ → S be a �nite étale cover of K-schemes with S
connected. There is a Galois cover T → S such that for every point s ∈ S(L)
with K ⊂ L and s ∈ S(L) a geometric point over s the following properties

are satis�ed.

(i) The set HomS(T, S′) is identi�ed with the geometric �ber S′ ×S s by

any choice of a point in that �ber.

(ii) The action of AutS T on S′ ×S s by a choice as in (i) is faithful.

(iii) The action of GL = Gal(L/L) on S′ ×S s factors through AutS T by

any choice as in (i), i.e. it is given by a map

ϕs : GL −→ AutS T

and di�erent choices of points in the �ber induces conjugated maps.

Proof. Let s ∈ S(L) and s ∈ S(L) a geometric point over s. Let us denote
by a1, . . . , an the elements of the set S′×S s and let Y = S′×S · · · ×S S′ the
product being taken n times. The geometric point a = (a1, . . . , an) ∈ Y ×S s
lies over a point a ∈ Y . Let C be the connected component of Y containing
a. Let p1, . . . , pn be the projections Y → S′ and ι : C ↪→ Y the inclusion.
These maps de�ne n elements p1 ◦ ι, . . . , pn ◦ ι ∈ HomS(C, S′). Furthermore
for i ∈ {1, . . . , n} we have pi ◦ ι(a) = ai so that the evaluation map

eva : HomS(C, S′) −→ S′ ×S s
f 7−→ f(a)

is surjective. As two �nite étale covers from a connected scheme which
coïncide on a geometric point are equal, eva is also injective and thus a
bijection.

We now prove that C is a Galois cover of S. First as C is connected the
action of AutS C on C×S s is free. We show it is transitive. Let a′ ∈ C×S s.
As before the evaluation map

eva′ : HomS(C, S′) −→ S′ ×S s
f 7−→ f(a′)

is injective hence bijective as the sets have the same cardinality. We also
have that HomS(C, S′) = {p1 ◦ ι, . . . , pn ◦ ι} so we get a′ = (aσ(1), . . . , aσ(n))
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for some permutation σ ∈ Sn. Now σ de�nes an automorphism of Y by
permuting the factors and a′ ∈ σ(C) so that σ(C) = C. The permutation σ
thus de�nes an automorphism of C which sends a to a′ and so the action is
transitive which proves that C is indeed Galois over S.

We now show that the action of AutS C on HomS(C, S′) is faithful which
gives (ii). Let g ∈ AutS C be such that g acts trivially on HomS(C, S′). It
follows that for all i ∈ {1, . . . , n} we have

pi ◦ ι(g(a)) = ai

so g(a) = a and g = idC .
We check property (iii). The action of GL on C ×S s commutes to that

of AutS C so that by the choice of a point in the geometric �ber it is given
by a map ϕs : GL → AutS C as the latter action is free and transitive. Now
as the following diagram commutes

C ×S s C ×S s

S′ ×S s S′ ×S s.

σ

f f

σ

the Galois action on S′ ×S s is deduced from the action on C ×S s which
yields (iii).

It remains to see that this construction is independent of the point
s ∈ S(L). Let t ∈ S(L) and t ∈ S(L) be another choice of L-point and
geometric point. The same construction yields a Galois cover T of S with
the same properties with regards to t. As S is connected the cardinality of
the geometric �bers of S′ → S is constant and every connected component
of S′ surjects onto S. Let S′ ×S t = {b1, . . . , bn} and assume without loss of
generality that b1 and a1 lie over points in the same connected component
of S′. Let π1 ∈ HomS(T, S′) be such that π1(b) = b1 for some b ∈ T (L) and
denote π2, . . . , πn the other elements of HomS(T, S′). The map π1 induces a
surjection from T on the connected component of S′ containing b1 so we get
a geometric point c ∈ T (L) such that π1(c) = a1. Now the map

evc : HomS(T, S′) −→ S′ ×S s
f 7−→ f(c)

is injective between sets of the same cardinality so it is bijective. Up to
renumbering the maps π1, . . . , πn de�ne a map η : T → Y such that pi◦η = πi
and

πi ◦ η(c) = ai.
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We get that η(c) = a and T maps to C. By the same argument we get a
map C → T and thus T ' C.

From now on, for a �nite étale cover of schemes S′ → S let T be a Galois
cover satisfying the properties of the proposition and ϕs be the map given
by (iii) for an L-point s of S. The following lemmas will enable us to check
that the open subsets coming from the maps πH : TH → S for H ⊂ AutS T
have �bers with constant Galois groups where we denote by TH the subcover
of T associated to H.

Lemma 3.2. Let S′ → S be a �nite étale cover of K-schemes and L/K be

an extension of �elds. For every s ∈ S(L) there is an isomorphism

GL/Kerϕs ' Gal(L(S′s(L))/L).

Proof. By de�nition Gal(L(S′s(L))/L) is the quotient GL/Ker ρs where

ρs : GL → AutS′ ×S s

is the natural Galois action. By property (iii) of T this action factor through
ϕs : GL −→ AutS T . As AutS T acts faithfully on S′×S s = HomS(T, S′) we
have Kerϕs = Ker ρs.

Lemma 3.3. Let S′ → S be a �nite étale cover of K-schemes and L/K be

an extension of �elds. Let s ∈ S(L) and H ⊂ AutS T be a subgroup. The

�ber TH ×S s has an L-point if and only if there is a g ∈ AutS T such that

Imϕs ⊂ gHg−1.

Proof. As before we identify HomS(T, TH) and TH×S s. The action of GL on
TH ×S s factor through AutS T by ϕs. The stabilizer of the canonical map
pH : T → TH by the action of AutS T is H so, as the action is transitive, the
stabilizer of any element in TH ×S s is a conjugate of H. We can now prove
the equivalence.

An L-point of TH ×S s corresponds to an element of HomS(T, TH) �xed
by GL. It follows that Imϕs is a subgroup of its stabilizer, that is a conjugate
of H. Conversely, if Imϕs lie in some conjugate gHg−1 of H it �xes g · pH ∈
HomS(T, TH) which yields an L-point of the �ber.

We can now prove the main result of this subsection.

Theorem 3.4. Let S′ → S be a �nite étale cover of K-schemes of �nite

type. Let L/K be a local �eld. Then there are �nite groups H1, . . . ,Hn and
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a �nite covering of S(L) by disjoint open sets (Ui)i∈{1,...,n} such that, for all

i ∈ {1, . . . , n} and s ∈ S(L),

s ∈ Ui ⇐⇒ Gal(L(S′s(L))/L) ' Hi.

Proof. For H ⊂ AutS T let πH : TH → S be the canonical map. Consider
the subsets

ŨH = πH(TH(L)) \
⋃
G(H

πG(TG(L))

of S(L). As the maps πG for G a subgroup of AutS T are �nite étale they
induce open and closed maps for the analytic topologies on TG(L) and S(L).
Hence the sets ŨH are open. The family of those open sets for varying
H ⊂ AutS T is a covering by construction.

Now choose representatives H1, . . . ,Hn of the isomorphism classes of the
subgroups of AutS T and put Ui =

⋃
H′⊂AutS T

H′'Hi

ŨH′ . The sets (Ui)i∈{1,...,n}

form an open covering of S(L).
We now prove the equivalence

s ∈ Ui ⇐⇒ Imϕs ' Hi

for s ∈ S(L). By de�nition of Ui, if s ∈ Ui we have that s is in ŨH for
some subgroup H ⊂ AutS T with H ' Hi. It follows that the �ber TH ×S s
has an L-point so that by Lemma 3.3 we have Imϕs ⊂ gHg−1 for some
g ∈ AutS T . Now if we have a containment Imϕs ⊂ gGg−1 for a subgroup
G ( H then again by Lemma 3.3 we get that the �ber TG×S s has an L-point
so that s ∈ πG(TG(L)) which is impossible by de�nition of ŨH . It follows
that Imϕs = gHg−1 ' Hi. The other direction is proved in a similar way.

We also get from the equivalence that the open sets (Ui)i∈{1,...,n} are
disjoint from each other.

We conclude the proof by Lemma 3.2 which gives

Imϕs ' Hi ⇐⇒ GL/Kerϕs ' Hi ⇐⇒ Gal(L(S′s(L))/L) ' Hi.

3.2 The case of an abelian scheme

An abelian scheme A → S comes with �nite étale covers A[n] → S, for any
integer n ∈ N \ {0}, given by the kernel of the multiplication by n map.
Proposition 2.2 then allows us to relate the analytic coverings of the base
scheme S obtained by Theorem 3.4 to the �nite monodromy groups of the
�bers of A.
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Theorem 3.5. Let A→ S be an abelian scheme with S over a number �eld

K and connected. Let v ∈ ΣK of residue characteristic p. Then there are

�nite groups (Gi)1≤i≤n and a �nite covering of S(Kv) by disjoint open sets

(Ui)1≤i≤n such that for s ∈ S(Kv) we have

s ∈ Ui ⇐⇒ ΦAs,v ' Gi.

In particular if L/K is a �nite extension with a place w | v such that Lw =
Kv then for a point s ∈ S(L) we have

sLw ∈ Ui ⇐⇒ ΦAs,w ' Gi.

Proof. By Theorem 3.4 applied to the �nite étale cover of the `-torsion
A[`] → S with ` > max(2 dimA + 1, p) and the local �eld Kun

v there are
�nite groups H1, . . . ,Hn and a covering (Vi)i∈{1,...,n} of S(Kun

v ) such that

s ∈ Vi ⇐⇒ Gal(Kun
v (As[`])/K

un
v ) ' Hi.

By Proposition 2.2 we have that Gal(Kun
v (As[`])/K

un
v ) is isomorphic ei-

ther to ΦAs,v or ΦAs,v × Z/`Z. For all i ∈ {1, . . . , n} such that Z/`Z is
a direct factor of Hi let Gi = Hi/(Z/`Z). For the remaining indices let
Gi = Hi. Now put

Uun
i =

⋃
Gj'Gi

Vj

and renumber the Uun
i to remove the redundancies so that we have

s ∈ Uun
i ⇐⇒ ΦAs,v ' Gi.

The injective map S(Kv) ↪→ S(Kun
v ) is continuous so that we get the

desired covering by taking Ui = Uun
i ∩ S(Kv).

As a direct consequence for a base scheme S satisfying weak approxima-
tion we get �bers with prescribed �nite monodromy groups.

Corollary 3.6. Let A→ S be an abelian scheme with S over a number �eld

K and satisfying weak approximation. Let v1, . . . , vn ∈ ΣK be distinct places

and si ∈ S(Kvi) be local points of S for each i ∈ {1, . . . , n}. Then there is a

point s ∈ S(K) with

ΦAs,vi ' ΦAsi ,vi
.

We end this section by an example of an elliptic scheme over the a�ne
line minus one point.
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Example 3.7. Let us consider the abelian scheme of dimension 1 over S =
A1

Q \ {0} given by the equation

E : y2 = x3 + t.

For any rational point s ∈ S(Q) the elliptic curve Es �ber of E at s has
equation

y2 = x3 + s

hence a discriminant ∆Es = −24 ·33 ·s2 and has 0 as j-invariant. Furthermore
we have c4 = 0 and c6 = 25 · 33 · s for the classical invariants c4 and c6. We
look at the reduction at 2 and 3 of the elliptic curve in the family E. The
fact that the j-invariant is 0 gives that these curves have potential good
reduction. We are going to construct from the work of Kraus in [Kr] explicit
open subsets of the open coverings given by Theorem 3.5 for the 2-adic and
3-adic topologies on S. We will restrict ourselves to small valuations for s
to have a Weierstrass equation that is minimal at 2 and 3.

We start by looking at the reduction at 3. The table page 356 of [Kr]
gives the �nite monodromy group of Es at 3 for s ∈ S(Q) depending on the
3-adic valuations of the invariants of Es and their reduction mod 9. We
treat some cases depending on v3(s) :

� v3(s) = 0: ΦEs,3 = Z/4Z if s ≡ 1 or 8 mod 9 and ΦEs,3 = Z/3ZoZ/4Z
otherwise.

� 1 ≤ v3(s) ≤ 4: ΦEs,3 = Z/3Zo Z/4Z unless v3(s) = 3. In that last case
we have ΦEs,3 = Z/4Z if, by noting s = 33u, we have u ≡ 1 or 8 mod 9.

We see from these computations that the 3-adic open subset of S corre-
sponding to the group Z/4Z by Theorem 3.5 contains the open balls 1+9Z3,
8 + 9Z3, 33 + 35Z3 and 8 · 33 + 35Z3.

For the reduction at 2 we look at the tables page 358�359 of [Kr]. The
equation is minimal for −2 ≤ v2(s) ≤ 4. We treat some of the possibilities.

� v2(s) = 0: ΦEs,2 = Z/3Z if s ≡ 1 mod 4 and ΦEs,2 = Z/6Z otherwise.

� v2(s) = 1: ΦEs,2 = Z/2Z.

� v2(s) = 2: ΦEs,2 = Z/3Z if s
22
≡ −1 mod 4 and ΦEs,2 = SL2(F3)

otherwise.

As for p = 3 these conditions give open balls contained in the open subsets
of the covering given by Theorem 3.5.
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We can thus choose elliptic curves with prescribed �nite monodromy at
2 and 3 in the list of possibilities. For example the curve

E4 : y2 = x3 + 4

has maximal �nite monodromy at 2 and 3, i.e. ΦEs,2 = SL2(F3) and ΦEs,3 =
Z/3Zo Z/4Z.

4 Existence of abelian varieties with maximal d(A)

We will consider the universal abelian scheme Zg → Hg of principally po-
larised and linearly rigidi�ed abelian varieties of dimension g. The construc-
tion of the moduli space Hg is done by D. Mumford in [GIT] chapter 7.
Weak approximation for Hg is not known so that we cannot use Corollary
3.6. We bypass this di�culty by the following lemma based on a result of T.
Ekedahl.

Lemma 4.1. Let ϕ : X → Y be a �nite étale cover of K-schemes of �nite

type for a number �eld K with X geometrically irreducible and Y satisfying

weak approximation. Let v1, . . . , vn ∈ ΣK be distinct places and Ui ⊂ X(Kvi)
be a nonempty open subset for each i ∈ {1, . . . , n}. Then there is a �nite

extension L/K with places wi | vi for each i ∈ {1, . . . , n} with Lwi = Kvi

and an x ∈ X(L) such that xLwi
∈ Ui for each i ∈ {1, . . . , n}.

Proof. As ϕ is a �nite étale cover the sets ϕ(Ui) are open in Y (Kvi) for
each i ∈ {1, . . . , n}. By assumption Y satis�es weak approximation and X
is geometrically irreducible so that by Theorem 1.3 of [Ek] there is a point
y ∈ Y (K) with yKvi

∈ ϕ(Ui) for each i ∈ {1, . . . , n} and y has a connected

�ber. As ϕ is �nite the point x ∈ ϕ−1(y) is an L-point of X with L/K a
�nite extension.

Now for a �xed i ∈ {1, . . . , n} the �ber of yKvi
by ϕ is given by SpecL⊗

Kvi . Furthermore, by construction yKvi
is in ϕ(Ui) so that there is a point

xi ∈ Ui with ϕ(xi) = yKvi
. Such a point corresponds to a place wi | vi of L

with Lwi = Kvi and so we have

xLwi
= xi.

The point x ∈ X(L) has the required properties.

We can now prove our main technical result from which both theorems
of the introduction will be deduced.
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Theorem 4.2. Let K be a number �eld, v1, . . . , vn ∈ ΣK and g a nonzero

integer. Let Bi be a principally polarised abelian variety of dimension g over

Kvi for 1 ≤ i ≤ n. Then there is a �nite extensionM of K with a principally

polarised abelian variety A of dimension g over M with

d(A) = lcm
i∈{1,...,n}

Card ΦBi,vi .

Proof. With a preliminary �nite extension of K unrami�ed at the places vi
and with enough places above each one of them (using Theorem 4 of the
chapter 6 of [Ri]) we can assume the vi are distinct. Let bi ∈ Hg(Kvi) be
points with �ber Bi for each i ∈ {1, . . . , n}. By Theorem 3.5 applied to
Zg → Hg there is an open subset Ui of Hg(Kvi) with bi ∈ Ui and such that

s ∈ Ui ⇐⇒ ΦAs,vi ' ΦBi,vi

where we denote by As the abelian variety (Zg)s given by a point s ∈ Hg. As
Hg is quasi-projective and geometrically irreducible there is a geometrically
irreducible a�ne open subset U ⊂ Hg with b1, . . . , bn ∈ U .

Let ϕ : U → Ak
K be the map given by Noether's normalization lemma.

As ϕ is generically étale there is a nonempty a�ne open subset V ⊂ U and
an open subset Y ⊂ Ak

K such that

ϕ|V : V −→ Y

is �nite étale. Let F = U \V . The subsets Ui∩V (Kvi) = Ui∩U(Kvi)\F (Kvi)
are open and nonempty. Indeed we have bi ∈ Ui∩U(Kvi) by construction so
that Ui ∩ U(Kvi) is nonempty open and F is of positive codimension hence
F (Kvi) is of empty interior. Now Lemma 4.1 provides a point s ∈ V (L) for
a �nite extension L/K and places wi ∈ ΣL with Lwi = Kvi and sLwi

∈ Ui
for each i ∈ {1, . . . n}. The abelian variety As given by s ∈ Hg(L) veri�es

ΦAs,wi = ΦBi,vi

by Theorem 3.5. It follows by Theorem 2.4 that lcm
i∈{1,...,n}

Card ΦBi,vi | d(As).

To get equality, for any place w ∈ ΣL \{w1, . . . , wn} of bad reduction for
As consider the extension Mw of Lw of degree Card ΦAs,w given by Lemma
2.1. Let d be the lowest common multiple of the degrees of the extensions
Mw obtained in this way and replace Mw by its unrami�ed extension of
degree d/Card ΦAs,w so that the extensions Mw/Lw have all degree d and
are such that (As)Mw is semi-stable. Let Mwi/Lwi be the unique unrami�ed
extension of degree d for all i ∈ {1, . . . , n} and M be the �eld extension of L
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given by Proposition 2.3 applied to the local extensions Mw for all w ∈ ΣL

of bad reduction. We have

d((As)M ) = lcm
w∈ΣM

Card Φ(As)M ,w

which by construction is lcm
i∈{1,...,n}

Card ΦBi,vi as (As)M has semi-stable re-

duction for all places of ΣM not above one of the wi and there is a unique
place Wi above each wi such that

Φ(As)M ,Wi
= ΦBi,vi .

As stated in the introduction, from the proof of the theorem we get the
following local-global result for �nite monodromy groups.

Theorem 4.3. Let K be a number �eld and g a nonzero integer. Let

G1, . . . , Gn be �nite groups such that there are places v1, . . . , vn ∈ ΣK and

principally polarised abelian varieties Ai of dimension g over Kvi for all

1 ≤ i ≤ n, such that

ΦAi,vi = Gi.

Then there is a �nite extension L of K and places w1, . . . , wn ∈ ΣL and a

principally polarised abelian variety A of dimension g over L such that for

all 1 ≤ i ≤ n we have

ΦA,wi = Gi.

We now prove Theorems 1.3 and 1.4.

Proof. (of Theorem 1.3)
Let p1, . . . , pn be the prime divisors of dg(K). By Theorem 2.4 there are

principally polarised abelian varieties B1, . . . , Bn of dimension g over K and
(not necessarily distinct) places v1, . . . , vn with

vpi(Card ΦBi,vi) = vpi(dg(K)).

Applying Theorem 4.2 to the varieties (B1)v1 , . . . , (Bn)vn yields the re-
sult.

Proof. (of Theorem 1.4) Applying Theorem 4.2 to the �eldK and the abelian
varieties obtained by Theorem 1.1 of [Ph] gives an abelian variety A over a

number �eld L with M(2g)
2g−1 = d(A). The inequality dg ≤M(2g) follows from

equality (1) and Corollary 6.3 of [SZ].
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